by danielvaughn 9 hours ago

I don’t know much about AI, but I have this image test that everything has failed at. You basically just present an image of a maze and ask the LLM to draw a line through the most optimal path.

Here’s how Nano Banana fared: https://x.com/danielvaughn/status/1971640520176029704?s=46

JamesSwift 7 hours ago | [-5 more]

I just oneshot it with claude code (opus 4.5) using this prompt. It took about 5 mins and included detecting that it was cheating at first (drew a line around the boundary of the maze instead), so it added guardrails for that:

```

Create a devenv project that does the following:

  - Read the image at maze.jpg
  - Write a script that solves the maze  in the most optimal way between the mouse and the cheese
  - Generate a new image which is of the original maze, but with a red line that represents the calculated path
Use whatever lib/framework is most appropriate

```

  Output: https://gist.github.com/J-Swift/ceb1db348f46ba167948f734ff0fc604  
  Solution: https://imgur.com/a/bkJloPT
nl 2 hours ago | [-2 more]

Programs can solve mazes and LLMs can program. That's a different thing completely.

JamesSwift 2 hours ago | [-1 more]

That just seems like an arbitrary limitation. Its like asking someone to do answer a math calculation but "no thinking allowed". Like, I guess we can gauge if a model just _knows all knowable things in the universe_ using that method... but anything of any value that you are gauging in terms of 'intelligence', is going to actually be validating their ability to go "outside the scope" of what they actually are (an autocomplete on steroids).

flyinglizard an hour ago | [-0 more]

We know there are very simple maze solving algorithms you could code in few lines of Python but no one could claim that constitutes intelligence. The difference is between applying intuitive logic and using a predetermined tool.

esafak 7 hours ago | [-0 more]

If you allow tool use much simpler models can solve it.

5 hours ago | [-0 more]
[deleted]
vunderba 8 hours ago | [-2 more]

In fact, one of the tests I use as part of GenAI Showdown involves both parts of the puzzle: draw a maze with a clearly defined entrance and exit, along with a dashed line indicating the solution to the maze.

Only one model (gpt-image-1) out of the 18 tested managed to pass the test successfully. Gemini 3.0 Pro got VERY close.

https://genai-showdown.specr.net/#the-labyrinth

danielvaughn 8 hours ago | [-1 more]

super cool! Interesting note about Seedream 4 - do you think awareness of A* actually could improve the outcome? Like I said, I'm no AI expert, so my intuitions are pretty bad, but I'd suspect that image analysis + algorithmic pathfinding don't have much crossover in terms of training capabilities. But I could be wrong!

vunderba 8 hours ago | [-0 more]

Great question. I do wish we had a bit more insight into the exact background "thinking" that was happening on systems like Seedream.

When you think about posing the "solve a visual image of a maze" to something like ChatGPT, there's a good chance it'll try to throw a python VM at it, threshold it with something like OpenCV, and use a shortest-path style algorithm to try and solve it.

kridsdale3 8 hours ago | [-0 more]

I have also tried the maze from a photo test a few times and never seen a one-shot success. But yesterday I was determined to succeed so I allowed Gemini 3 to write a python gui app that takes in photos of physical mazes (I have a bunch of 3d printed ones) and find the path. This does work.

Gemini 3 then one-shot ported the whole thing (which uses CV py libraries) to a single page html+js version which works just as well.

I gave that to Claude to assess and assign a FAANG hiring level to, and it was amazed and said Gemini 3 codes like an L6.

Since I work for Google and used my phone in the office to do this, I think I can't share the source or file.

pwagland 8 hours ago | [-2 more]

I tried this with Claude:

``` > [Image #1] Create a unicode "ascii-art" version of this image, with the optimal path through the maze highlighted in a solid colour.

I'll create an ASCII art version of this maze with the solution path highlighted!

  ┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
  ●●│ │ │ │       │   │       │     │ │   │   │ │ │   │
  ├─┤●└─┴─┐ ├───┐ │ ╔═╗ ├─────┤ ╔═══╝ │ ╔═╝ ╔═╝ │ │ ╔═╝ ├─┤
  │ │●●●●●└─┤   │ │ ║ │ │     │ ║     │ ║   ║   │ │ ║   │ │
  │ └───┐●╔═╧═╗ │ └─╢ │ │ ┌─╔═╝ ║ ┌───┤ ╚═╗ ╚═╗ │ └─╢ ┌─┘ │
  │     │●║   ║ │   ║ │ │ │ ║   ║ │   │   ║   ║ │   ║ │   │
  ├───┐ │●╚═╗ ╚═╧═╗ ║ └─┤ │ ║ ╔═╝ └─╔═╧═╗ ╚═╗ ╚═╧═╗ ║ └─┬─┤
  │   │ │●●●└───┐ ║ ║   │ │ ║ ║     ║   ║   ║     ║ ║   │ │
  │ ╔═╝ └───┐●╔═╝ ║ ╚═╗ │ └─╢ ╚═╗ ╔═╝ ╔═╝ ┌─╢ ╔═══╝ ╚═╗ │ │
  │ ║       │●║   ║   ║ │   ║   ║ ║   ║   │ ║ ║       ║ │ │
  │ ╚═══╗ ╔═╝●╚═╗ ╚═╗ ║ ├─╔═╧═╗ ║ ║ ╔═╝ ╔═╝ ║ ║ ╔═╗ ╔═╝ │ │
  │     ║ ║●●●●●│   ║ ║ │ ║   ║ ║ ║ ║   ║   ║ ║ ║ ║ ║   │ │
  ├───╔═╝ ║●┌─┐●└─╗ ║ └─┤ ║ ╔═╝ ║ ╚═╝ ╔═╧═╗ ║ ╚═╝ ║ ╚═╗ │ │
  │   ║   ║●│ │●●●║ ║   │ ║ ║   ║     ║   ║ ║     ║   ║ │ │
  │ ╔═╝ ╔═╝●│ └─┐●╚═╧═╗ │ ║ ║ ╔═╧═══╗ ║ ╔═╝ ╚═══╗ ╚═╗ ║ └─┤
  │ ║   ║●●●│   │●●●●●║ │ ║ ║ ║     ║ ║ ║       ║   ║ ║   │
  │ ║ ╔═╝●┌─┴─╗ └───┐●╚═╝ ║ ║ ║ ╔═╗ ║ └─╢ ╔═══╗ ╚═╗ ╚═╝ ╔═╝
  │ ║ ║●●●│   ║     │●●●●●║ ║ ║ ║ ║ ║   ║ ║   ║   ║     ║
  │ ╚═╝●╔═╧═╗ ╚═╗ ╔═╧═══┐●╚═╝ ║ ║ ║ ╚═╗ ║ ║ ╔═╧═╗ ╚═══╗ ╚═╗
  │   ●●║   ║   ║ ║     │●●●●●║ ║ ║   ║ ║ ║ ║   ║     ║   ║
  ├─╔═┘●╚═╗ ╚═╗ ║ ║ ╔═╗ └───┐●╚═╝ ╚═╗ ║ └─╢ ║ ╔═╧═╗ ╔═╝ ╔═╝
  │ ║●●●●●║   ║ ║ ║ ║ ║     │●●●●●●●║ ║   ║ ║ ║   ║ ║   ║
  │ ║●┌─╗ ╚═╗ ║ └─╢ ║ ╚═══╗ └─────┐●╚═╧═╗ ║ ║ ║ ╔═╝ ║ ╔═╝ ╔
  │ ║●│ ║   ║ ║   ║ ║     ║       │●●●●●║ ║ ║ ║ ║   ║ ║   ║
  │ ╚═╝ ║ ╔═╝ ╚═╗ ║ ╚═╗ ╔═╧═════╗ └───┐●╚═╝ ║ ╚═╝ ╔═╝ ║ ╔═╝
  │     ║ ║     ║ ║   ║ ║       ║     │●●●●●║     ║   ║ ║
  └─────╨─╨─────╨─╨───╨─╨───────╨─────┴───●●╨─────╨───╨─╨──

  The path from the mouse () to the cheese () is marked with ● characters. This shows the optimal route through the maze, navigating through the corridors while avoiding all the walls!
```

Suffice to say, it didn't do either part right.

ActorNightly 7 hours ago | [-0 more]

>Suffice to say, it didn't do either part right.

I dunno why people are surprised by this. This is what you get with text->text. Reasoning doesn't work text->text.

biophysboy 8 hours ago | [-0 more]

Honestly, even though it failed, I'm kind of impressed that the trajectory mostly stays in the lines. If you remove all but two openings, does it work? The drawing you show has more than two openings, some of which are inaccessible from the inside of the maze.

FeepingCreature 4 hours ago | [-0 more]

I kinda want to know what happens if you make it continue the line by one step 20 times in a row. A human can draw this gradually, the image model has to draw it in one shot all at once.

buildbot 8 hours ago | [-0 more]

That might be an interesting training set, a bunch of mazes…

jiggawatts 8 hours ago | [-0 more]

The reason is that image generators don't iterate on the output in the same way the text-based LLMs do. Essentially they produce the image in "one hit" and can't solve a complex sequence in the same way you couldn't one-shot this either. Try taking a random maze, glance at it, then go off to draw a squiggle on a transparency. If you were to place that on top of the maze, there's virtually no chance that you'd have found the solution on the first try.

That's essentially what's going on with AI models, they're struggling because they only get "one step" to solve the problem instead of being able to trace through the maze slowly.

An interesting experiment would be to ask the AI to incrementally solve the maze. Ask it to draw a line starting at the entrance a little ways into the maze, then a little bit further, etc... until it gets to the end.